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Abstract

Because demographic realism complicates analysis, mathematical modelers either ignore

demography or make simplifying assumptions (e.g., births and deaths equal). But human

populations differ demographically, perhaps most notably in their mortality schedules. We

developed an age-stratified population model with births, deaths, aging and mixing between

age groups. The model includes types I and II mortality as special cases. We used the gradient

approach (Feng et al., 2015, 2017) to explore the impact of mortality patterns on optimal strategies

for mitigating vaccine-preventable diseases such as measles and rubella, which the international

community has targeted for eradication. Identification of optimal vaccine allocations to reduce

the effective reproduction number ℛv under various scenarios is presented. Numerical simulations

of the model with various types of mortality are carried out to ascertain the long-term effects

of vaccination on disease incidence. We conclude that both optimal vaccination strategies and

long-term effects of vaccination may depend on demographic assumptions.
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1. Introduction

Meta-population models of heterogeneous host populations, especially ones whose members

mix non-randomly, have basic reproduction numbers, ℛ0, that may be much larger

than those from homogeneous host population models (Glasser et al., 2016). Similar

discrepancies can also be present in effective reproduction numbers, ℛv, derived from these

models. When a control measure such as vaccination is considered, ℛv is a function of

parameters representing effort levels in the several sub-populations. Feng et al. (2015) and

Feng et al. (2017) showed that the optimal vaccine allocation among sub-populations can
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be identified by the gradient of ℛv (its multivariate partial derivative) with respect to the

vaccination rates.

The meta-population model of Feng et al. (2017) considers demographic heterogeneity,

but does not distinguish births/immigration/aging and deaths/emigration/aging, in which

respects age groups may differ. The model considered in this paper includes births, deaths

and aging, but not immigration/emigration, which may be implicitly modeled via a mixing

function. Moreover, we consider models with types I and II mortality (i.e., death occurs only

in the last age group or at a constant rate in all groups), which may be more appropriate

for developed and developing countries, respectively. This flexibility may be needed to

evaluate vaccination programs to eliminate pathogens from countries with different mortality

schedules en route to global eradication.

The effective reproduction number for the model with general mortality is derived using

the next-generation matrix (NGM) approach. Because of complexities such as preferential

mixing, aging, and heterogeneous vaccination coverage, the elements of the NGM

involve long expressions. To ensure that they make biological sense, we provide intuitive

interpretations of their constituent quantities that facilitate understanding how various

complexities affect the magnitude of ℛv. We explore the influence of mortality schedules

on optimal vaccination strategies and long-term impact of vaccination on incidence. Results

suggest that, in some cases, mortality schedules may be influential.

This paper is organized as follows. In Section 2, we formulate a SEIR type age-structured

meta-population model with age-dependent fertility and mortality rates, which include types

I and II mortality as special cases. Derivation of the effective reproduction number is

included in Section 3. Intuitive explanations for elements of the next-generation matrix,

which are complicated by demographic processes, are also provided. In Section 4, we

present optimal vaccination strategies derived via the gradient method for measles with

various mortality schedules. This section also includes comparisons, in terms of optimal

vaccine allocations, of models with types I and II mortality and the longterm effect of

vaccination on incidence ascertained via numerical simulations. We discuss the findings in

Section 5.

2. Formulation of the model

The meta-population model considered in this paper comprises n sub-populations (or

groups) whose members are susceptible Si, exposed (infected, but not yet infectious) Ei,

infectious Ii, or removed Ri from the infection process (by virtue of immunization or

naturally acquired immunity). The population size of group i is denoted by Ni = Si + Ei + Ii

+ Ri and the total population size is

N = N1 + N2 + ⋯ + Nn .

For demographic dynamics in the absence of disease and vaccination, we adopt the

framework of Hethcote (2000), in which an ordinary differential equation model of an

age-structured population with aging is derived from a partial differential equation system
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with continuous age (u). In his derivation, the n age groups are defined by the intervals [ui−1,

ui), where 0 = u0 < u1 < u2 < ⋯ < un−1 < un = ∞, and the per capita rates of fertility and

mortality within age groups i are constants denoted by fi and μi, respectively. Let θi denote

the rates at which people exit age groups i due to aging (i.e., age from group i to i + 1)

with θn = 0. Assume that the population has reached its stable age-distribution with constant

growth rate ρ. Then Ni(t) = eρtPi, where the Pi are constants satisfying

Pi + 1 = θiPi
θi + 1 + μi + 1 + ρ , for 1 ≤ i ≤ n . (1)

The constant P1 is equal to N1(0) under the assumption that

∑
i = 1

n
fiNi = (θ1 + μ1 + ρ)N1,

as it leads to the equation N1′ = ρN1. Because N1(t) = eρtN1(0), P1 = N1(0).

For the stable age distribution Pi to exist, the fertility (fi), mortality (μi), aging (θi), and

growth (ρ) rates must satisfy the following constraint (Hethcote, 2000):

f1 + f2
θ1

θ2 + μ2 + ρ + ⋯ + fn
θn − 1⋯θ1

(θn + μn + ρ)⋯(θ2 + μ2 + ρ)
θ1 + μ1 + ρ = 1 . (2)

Thus, for given fertility, mortality, and aging rates, Eq. (2) can be used to determine the

growth rate ρ. If ρ is negative, 0, or positive, the population is decreasing, constant, or

increasing in size, respectively, with time. The exact formula for θi is θi = (μi + ρ)/(exp[(μi +

ρ)(ui − ui−1)] − 1), but when μi and ρ are small, the approximation θi = 1/(ui − ui−1) for the

aging rates can be used.

For the corresponding SEIR model, suppose that all newborn individuals are susceptible and

that a proportion σ is immunized. Then the system of equations is

S1′ = (1 − σ)(θ1 + μ1 + ρ)eρtP1 − (λ1 + θ1 + μ1 + χ1)S1,
Si′ = θi − 1Si − 1 − (λi + θi + μi + χi)Si, 1 < i ≤ n,
E1′ = λ1S1 − (α + θ1 + μ1)E1,
Ei′ = θi − 1Ei − 1 + λiSi − (α + θi + μi)Ei, 1 < i ≤ n,
I1′ = αE1 − (γ + θ1 + μ1)I1,
Ii′ = θi − 1Ii − 1 + αEi − (γ + θi + μi)Ii, 1 < i ≤ n,
R1′ = σ(θ1 + μ1 + ρ)eρtP1 + γI1 + χ1S1 − (θ1 + μ1)R1,
Ri′ = θi − 1Ri − 1 + γIi + χiSi − (θi + μi)Ri, 1 < i ≤ n,

(3)

where α is the reciprocal of the latent (pre-infectious) period, γ is the recovery rate, and χi

is the vaccination rate for susceptible individuals in group i. The forces or hazard rates of

infection among susceptible people are
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λi = aiβi ∑
j = 1

n
cij

Ij
Nj

, 1 ≤ i ≤ n, (4)

where ai is the per capita contact rate, βi is the probability of infection upon contacting an

infectious person, cij is the proportion of the contacts of members of the ith sub-population

that is with members of the jth, and Ij/Nj is the probability that a randomly encountered

member of sub-population j is infectious. In this paper, we will consider the function of

Jacquez et al. (1988), who modified that of Nold (Nold, 1980), defined as

cij = ϵiδij + (1 − ϵi)gj, gj = (1 − ϵj)ajPj
∑k (1 − ϵk)akPk

, (5)

where the ϵi are fractions of contacts reserved for one’s own group (termed preferences), and

δij is the Kronecker delta (1 when i = j and 0 otherwise). The function gj describes mixing

that is random (i.e., proportional to unreserved contacts, [1 − ϵj]ajPj). A transition diagram

corresponding to this model is depicted in Fig. 1.

The generality in choice of birth fi and death rates μi allows the demographic model to

cover age-dependent fertility and mortality rates, including types I and II mortality. For type

I mortality, it is assumed that the lifespan is fixed at a maximum age umax after which

everyone dies; i.e., μi = 0 for all i < n and μn = ∞ (or a large value). For type II mortality, it

is assumed that all age groups have the same constant per capita death rate μi = μ, where 1/μ
corresponds to the mean lifespan.

The constraint (2) can be expressed using biologically relevant quantities. Let τi denote the

mean sojourn in age group i and ϕi denote the probability of aging from group i to i + 1; i.e.,

τi(ρ) = 1
θi + μi + ρ , ϕi(ρ) =

θi
θi + μi + ρ , 1 ≤ i ≤ n .

Note that Φj(ρ) = ∏i = 1
j − 1 ϕi(ρ) (with Φ1 = 1) represents the probability that a person ages

from group 1 to group j. Thus, Eq. (2) can be rewritten as

∑
j = 1

n
fjΦj(ρ)τj(ρ) = 1 . (6)

Expression (6) makes the condition more biologically transparent. When ρ = 0, the left-hand

side is the population reproduction number

ℛpop = ∑
j = 1

n
fjΦj(0)τj(0) .
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Clearly, ℛpop is equal to 1 if and only if the population remains constant (i.e., growth rate ρ
= 0), and ℛpop > 1 ( < 1) if ρ > 0 (< 0).

Consider the fractions xi(t) =
Si(t)
eρtPi

, yi(t) =
Ei(t)
eρtPi

, zi(t) =
Ii(t)
eρtPi

, and let rij = Pi/Pj denote the

ratio of the sub-populations i and j. Then the system of equations (3) becomes

x1′ = (1 − σ)(θ1 + μ1 + ρ) − (λ1 + θ1 + μ1 + ρ + χ1)x1,
xi′ = r(i − 1)iθi − 1xi − 1 − (λi + θi + μi + ρ + χi)xi, 1 < i ≤ n,
y1′ = λ1x1 − (α + θ1 + μ1 + ρ)y1,
yi′ = r(i − 1)iθi − 1yi − 1 + λixi − (α + θi + μi + ρ)yi, 1 < i ≤ n,
z1′ = αy1 − (γ + θ1 + μ1 + ρ)z1,
zi′ = r(i − 1)iθi − 1zi − 1 + αyi − (γ + θi + μi + ρ)zi, 1 < i ≤ n .

(7)

The fraction recovered is 1 − xi − yi − zi for i = 1, 2, … , n.

3. Effective reproduction numbers

We derive the effective reproduction numbers using system (7), and provide a biological

interpretation of the elements of the next-generation matrix (NGM). Let wi denote the

probabilities of susceptible people in group i being vaccinated before aging or dying; i.e., wi

= χi/(μi + θi + ρ + χi). The disease-free equilibrium is

x1
∗ = (1 − σ)(1 − w1),

xi∗ = r(i − 1)i
θi − 1

θi + μi + ρ + χi
xi − 1

∗ , 2 ≤ i ≤ n,

yi∗ = zi∗ = 0, 1 ≤ i ≤ n,

or equivalently,

xi∗ = (1 − σ) ∏
j = 1

i
(1 − wj),

yi∗ = zi∗ = 0, 1 ≤ i ≤ n .
(8)

Proceeding via the NGM method (Diekmann and Heesterbeek, 2000; Van den Driessche

and Watmough, 2002), the Jacobian (considering only the disease variables) is J =
J11 J12
J21 J22

,

where J11, J12, J21 and J22 are given in Box 1.

For ease of presentation and interpretation, introduce the following biologically relevant

quantities for group i (i = 1, 2, … , n):
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ξi = α
α + θi + μi + ρ Probabilities that latent people in

age‐group i become infectious
before aging or dying,

pi = θi
γ + θi + μi + ρ Probabilities that infectious people

in age‐group i age before
recovering or dying,

qi = θi
α + θi + μi + ρ Probabilities that latent people in

age‐group i age before becoming
infectious or dying,

τiE = 1
α + θi + μi + ρ Death‐ and aging‐adjusted latent

periods in group i,
τiI = 1

γ + θi + μi + ρ Death‐ and aging‐adjusted
infectious periods in group i .

(9)

These symbols and definition are also listed in Table 1. Note that an infected person can

take multiple routes, depending on the order of these events: aging, becoming infectious, and

recovering. The diagram in Fig. 2 illustrates the scenario in which a person is infected while

in group j and recovers while in group s.

To facilitate description of the probabilities corresponding to various routes, which

simplifies presentation of the elements of the NGM, we introduce the following quantities:

Qjr = ∏m = j
r − 1 qm Probabilities that a person who was infected while in age-group j aged

to group r ≥ j before becoming infectious or dying (for ease of notation, define

Qjj = ∏m = j
j − 1 qm = 1).

Prs = ∏i = r
s − 1 pi Probabilities that a person who became infectious while in age-group r aged

to group s ≥ r before recovering or dying (for ease of notation, define Prr = ∏i = r
r − 1 pi = 1).

Using these notations, the probability that a person who was infected while in group j,
became infectious while in group r ≥ j, and recovered while in group s ≥ r (i.e., the path

illustrated in Fig. 2) is

∏
m = j

r − 1
qmξr ∏

i = r

s − 1
pi = QjrξrPrs .

Let J = F − V, where F =
0 J12
0 0

 and V =
−J11 0
−J21 −J22

. It is easy to verify that

V −1 =
−J11

−1 0

−J22
−1J21J11

−1 −J22
, where

Feng et al. Page 6

Theor Popul Biol. Author manuscript; available in PMC 2022 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



J11
−1 =

τ1
E 0 ⋯ 0 0

r12q1τ2
E τ2

E ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

r1nQ1nτnE r2nQ2nτnE ⋯ r(n − 1)nqn − 1τnE τnE

,

J22
−1 =

τ1
I 0 ⋯ 0 0

r12p1τ2
I τ2

I ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

r1nP1nτnI r2nP2nτnI ⋯ r(n − 1)npn − 1τnI τnI

,

and the matrix J22
−1J21J11

−1 is

ξ1τ1
I 0 ⋯ 0 0

r12 ∑
j = 1

2
Q1jξjPj1τ2

I ξ2τ2
I ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

r1n ∑
j = 1

n
Q1jξjPjnτnI r2n ∑

j = 2

n
Q2jξjPjnτnI ⋯ r(n − 1)n ∑

j = n − 1

n
Q(n − 1)jξjPjnτnI ξnτnI

.

The next-generation matrix is K = FV −1 =
K11 ∗

0 0
, where K11 = F12J22

−1J21J11
−1. The ‘*’

denotes a block matrix that does not affect the eigenvalues of K. The meta-population ℛv is

the dominant eigenvalue of K11. Let

Aij = cijτnIξj + rj(j + 1)ci(j + 1)τj + 1
I (ξjpi + qjξj + 1) + ⋯

+ rjscisτsI ∑
r = j

s
QjrξrPrs + ⋯ + rjncinτnI ∑

r = j

n
QjrξrPrn

= ∑
s = j

n
rjscisτsI ∑

r = j

s
QjrξrPrs, 1 ≤ i, j ≤ n .

(10)

Biological interpretations of the expressions Aij are provided in the next section. The

elements in the expression of Aij for types I and II mortality are listed in Table 1. The

matrix K11 can be written as

K11 = (aiβixi∗Aij) = diag(a1β1x1
∗, a2β2x2

∗, …, anβnxn∗)(Aij), (11)

where the xi∗ are steady-state numbers of susceptible people given in Eq. (8), (Aij) is

the matrix with elements Aij, and the dominant eigenvalue of K11 gives the effective

reproduction number ℛv.
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Notice that the influence of mixing on ℛv is represented by Aij. For the general mixing

function described in Eq. (5) with n > 3, explicit formulae for the dominant eigenvalue of

the matrix K11 can be very difficult to derive, and ℛv is usually computed numerically.

However, in the case of proportionate mixing (i.e., ϵi = 0 for all i), K11 has rank 1 and the

ℛv is given by the trace.

3.1.  Interpretation of Aij in K 11

All entries in K11 have the form aiβixi∗Aij. The factor Aij represents the proportion of

effective contacts with people in group i of one person who was infected while in group j
during his/her infectious period. As mentioned, this infected person can take various routes

depending on the order of three events: aging, disease progression (becoming infectious),

and recovery. For example, if the person became infectious while in group j, the total

number of contacts with people in group i would be Aij. Each path corresponds to one

term in Aij, as depicted in Fig. 2. More specifically, the first term corresponds to the path

of disease progression (with probability ξi) and recovery before aging, in which case the

infectious period is τjI and proportion of contacts with group i is cij.

The second term in Aij corresponds to the person recovering while in group j + 1, in which

case s/he either became infectious in group j (with probability ξj) and then aged to group j
+ 1 before recovery (with probability pj), or aged to group j +1 before becoming infectious

(with probability qj) and became infectious while in group j + 1 (with probability ξj). For

both cases, the infectious period is τj + 1
I  and the proportion of contacts with group i is ci(j+1).

The ratio rj(j+1) = Pj/Pj+1 represents the relative sizes of the sub-populations to which the

infected and infectious people belong. This term is needed because of aging in the model.

The generic term in Aij involving τsI, 1 < s < n, describes the case when recovery occurred

while in group s. This includes several paths. The infected person can (i) become infectious

while in group j (with probability ξj) and then age through all groups before recovering

in group s (with probability Pjs = ∏k = j
s − 1 pk; (ii) age to group j + 1 (with probability qj),

become infectious within group j + 1 (with probability ξj), and then age through all groups

before recovering in group s (with probability P(j + 1)s = ∏k = j + 1
s − 1 pk, etc.; and finally (iii)

age to group s (with probability Qjs = ∏k = j
s − 1 qk and become infectious within group s (with

probability ξs). For all such cases, the infectious period is τsI and the proportion of contacts

with group i is cis.

It follows that aiβixi∗Aij represents the average number of new infections generated among

susceptible people in group i by one person who was infected while in group j.

3.2. ℛv In special cases

Consider first the case where mixing is proportionate (i.e., the cij are given by Eq. (5) with ϵi

= 0). Note that c1j = c2j = ⋯ = cnj for all j, which leads to A1j = A2j = ⋯ = Anj for all j. In
this case, K11 has rank 1 and its dominant eigenvalue is the trace. Hence,
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ℛv = ∑
i = 1

n
aiβixi∗Aii, (12)

where the Aii are given in Eq. (10)

For general mixing, consider the case where n = 2 sub-populations. The matrix K11 has the

form K11 = A B
C D , where

A = a1β1x1
∗A11, B = a1β1x1

∗A12, C = a2β2x2
∗A21, D = a2β2x2

∗A22,

and

Ai1 = τ1
Iξ1ci1 + τ2

Ic12
N1
N2

(ξ1p1 + q1ξ2), Ai2 = τ2
Iξ2ci2, i = 1, 2 .

In this case, for any mixing matrix (cij),

ℛv = 1
2 A + D + (A − D)2 + 4BC .

4. Optimal vaccination strategy

Assume that ℛv > 1 and some number of additional vaccine doses is available. Let χ = (χ1,

χ2, … , χn) ≥ 0 denote the vector of vaccination rates and let ℛv(χ) denote the effective

reproduction number corresponding to χ. The optimal vaccine allocation can be obtained by

solving the following Lagrange optimization problem:

Minimize ℛv(χ), subject to ∑
i = 1

n
χixi∗Pi = c . (13)

The constant c represents the available vaccine doses and the xi∗Pi denote the number of

susceptible people in group i, where xi∗ is given by Eq. (8) with χi = 0

The solution to (13) can be determined by solving simultaneously the equations

∇ℛv + λ(x1
∗P1, x2

∗P2, …, xn∗Pn) = 0 and ∑
i = 1

n
χixi∗Pi = c, (14)

where λ is a Lagrange multiplier. Let X = (χ1, χ2, …, χn) denote the optimal solution

to problem (13) and let ℛvmin = ℛv(X). It can be shown (Feng et al., 2015) that the

gradient ∇ℛv(X) is orthogonal to the hyperplane ∑i = 1
n χixi∗Pi = c at the point X, where the

hypersurface ℛv(χ) = ℛvmin intersects this hyperplane.
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Another optimization problem aims at finding the minimum doses required to achieve

a prescribed reduction in ℛv. Let δ be the reduction; i.e., δ = ℛv − ℛv(χ). To find the

vaccination strategy that requires the least doses, we solve the following optimization

problem:

Minimize ∑
i = 1

n
χixi∗Pi, subject to ℛv(χ) ≤ ℛv − δ . (15)

Using a similar approach, Feng et al. (2015) showed that the solution to problem (15) is

given by the gradient ∇ℛv.

4.1. Effect of mortality on the optimal strategy

Consider the case of n = 15 age groups: 0, 1–4, 5–9, …, 65+ years. Assume that the time

unit is months. We adopt the parameters for measles in China (Hao et al., 2019): 1/α = 0.5

(month), 1/γ = 0.25 (month), and several vectors whose age-dependent values are listed in

Table 2, including contact rates, (ai), probabilities of infection per contact, (βi), aging rates,

(θi), 2014 fertility, (fi) and mortality rates, (μi), and types I, (μiI), and II mortality with longer

and shorter lifespans, μiII and μiII, 1 ≤ i ≤ n. Using these parameter values, the population

growth rate determined by condition (2) is ρ = 0.00067. For types I and II mortality, the fi

are scaled to satisfy equation (2) while preserving their age distribution.

Fig. 3 illustrates the corresponding survivorship curves. One corresponds to the mortality

schedule (μi) given in Table 2. The others represent two extremes, type I mortality with μi =

0 for 1 ≤ i ≤ 14 and 1/μ15 = 5 × 12 (months) and type II mortality with different lifespans;

i.e., a lifespan of 70 years (μi = 1/(70 × 12) for all i, labeled as Type IIa) or 40 years (μi =

1/(40 × 12) for all i, labeled as Type IIb).

To demonstrate the influence of mortality, suppose that the existing vaccination program

applies σ = 0.5 coverage to the infant group and consider the case when 5k additional doses

per year are available for children aged 5–19 years (groups 3–5). We identify their optimal

allocation from the model under four types of mortality. For comparability, we scale the β
vector so that all four basic reproduction numbers are equal to 18. The scaling constants are

0.95 (type I), 1.05 (type IIa), and 0.97 (type IIb). We assume that mixing is proportionate for

analyses in this section and simulations in the next. The results are illustrated in Fig. 4.

For the actual mortality schedule (Table 3(a)), the reproduction number, given routine

vaccine coverage of σ = 0.5, is reduced from ℛ0 = 18 to ℛv = 9. With 5k additional

vaccine doses per year, the optimal solution is (χ3, χ4, χ5) = (0.0082, 0.0066, 0.0045) and the

corresponding reproduction number is ℛvmin = 4.38. Results for other three mortality types

are also listed in Table 3.

The contour surface of ℛv corresponding to the optimal solution is illustrated in Fig. 4(a).

The light plane is the constraint corresponding to the additional 5k doses per year, which is

tangent to the surface with their intersection corresponding to the optimal strategy. Notice
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that the gradient of the function ℛv(χ3, χ4, χ5) at the intersection point is normal to the

constraint. Fig. 4(b)-(d) show the optimal solutions based on types I, IIa, and IIb mortality

as shown in Table 3. In these cases, the reproduction numbers were all equal to 9 before

additional vaccine doses were administered. With the additional 5k doses per year, the

minimized values of ℛvmin in these three cases are 4.53, 5.61, and 6.16, respectively.

With 10k additional vaccine doses per year, the optimal solutions (χ3, χ4, χ5) for the four

mortality types are also listed in Table 3, and the corresponding minimized values of the

reproduction numbers ℛvmin are 2.74, 2.86, 3.97, and 4.64, respectively.

4.2. Effect of mortality on the impact of control efforts

The comparisons in Section 4.1 are based on reductions in the effective reproduction

number. Vaccination programs can also be evaluated by reductions in incidence. In this

section, we present numerical simulations of model (3) with different mortality schedules.

To ensure that these models are comparable, we fix several parameter values. We choose the

growth rate ρ and population size at the beginning of simulations. We consider the model

with actual birth and death rates as the baseline. Using the values of βi, θi, fi, and μi in the

top panel of Table 2, we determine the growth rate ρ using the formula (2), which is ρ =

0.00067. Choosing P1 = 10 000, we compute Pi (2 ≤ i ≤ 15) using the formula (1) to get the

stable age distribution:

(P1, P2, …, P15) = (10000, 38681, 45429, 44584, 42787,
41062, 39362, 37688, 36045, 34354, 32669,
30767, 28797, 26405, 98234)

(16)

with total population size Ptotal = ∑i = 1
15 Pi = 587 864. For initial conditions, we use disease

surveillance and serological observations (Hao et al., 2019) to calculate the vectors of

proportions pS, pI and pR where

(pS)i =
Si
Pi

, (pI)i =
Ii
Pi

, (pR)i =
Ri
Pi

, i = 1, 2, …, 15,

from which we obtain the initial conditions for S, I and R. In the absence of information

about the exposed class, we assume that E = 0 and determine new initial conditions after a

burn-in period T. For example, choosing T = 117, the initial conditions are

S0i = Si(T ), E0i = Ei(T ), I0i = Ii(T ), R0i = Ri(T ),
1 ≤ i ≤ 15 . (17)

We remark that e−ρT ∑i = 1
15 (S0i + E0i + I0i + R0i) = Pi.

The solution of system (3) with initial condition (17) for the actual birth and death rates

is shown in Fig. 5(a), which plots total incidence (new infections from all groups per
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106) scaled by e−ρt. Scaling (i.e., multiplying by the factor e−ρt) corrects for the solution

increasing with positive growth rate ρ > 0.

We scaled the actual fertility schedule by the factors 0.984, 1.457, and 1.923 for mortality

types I, IIa, and IIb, respectively, to achieve the same ρ = 0.00067. And we chose P1 = 10

520, 16 500, 21 200, respectively, so that the population sizes Ptotal were similar. Then we

repeated the procedure described above for the actual birth and death rates. That is, using the

same proportions for vectors pS, pI, and pR together with Ptotal, we obtained the preliminary

initial conditions. The burn-in periods T for mortality types I, IIa, and IIb are T = 117, 75,

and 55, respectively. These T values were chosen to obtain similar total incidence values.

Then we chose the solution values at T to be the new initial conditions (Table 4 in the

Appendix A).

To facilitate comparison, equal vaccination rates were applied to children aged 5–19 years

(groups 3–5). The simulation results with initial conditions described above, other parameter

values the same as in Section 4.1, and vaccination coverage c = 0, 0.1, 0.2 and 0.4 are

illustrated in Fig. 5. The corresponding immunization rates are χ = − 1
12 ln(1 − 0.95c) per

month, where 0.95 is vaccine efficacy.

We observe from Fig. 5 that, under equal vaccination coverage c, the model with type IIb

mortality has the highest long-term incidence and vaccination has the least effect (see (d)).

The endemic levels corresponding to types I and IIa mortality are similar, while that with

type IIb mortality is higher. The effect of increasing c is most apparent for type I and least

for IIb (see (b) and (d)), with type IIa intermediate. For example, the endemic levels for c =

0.4 are decreased by about 60% and 20%, respectively, in comparison with that for c = 0. We

also observe that, for the model with actual fertility and mortality rates, the endemic level

and effects of increasing c are closer to those for type I than II mortality (see (a)–(c)).

5. Discussion

John (1990) compared age-specific transmission models with the same mortality, but

different fertility schedules. She showed that time to equilibrium, age-specific incidence

and proportions susceptible at equilibrium, and effectiveness of immunization all depended

on fertility. Using actual and model mortality schedules, we investigated whether or not

mortality affects optimal vaccination programs.

We developed a SEIR model with multiple age groups, aging and age-dependent fertility

and mortality rates (system (3)). Using the method of Lagrange optimization with constraint,

we identified the optimal allocation of supplemental vaccine doses to reduce the effective

reproduction number ℛv of the metapopulation. And we carried out numerical simulations

to examine the effect of supplemental vaccination at equal age-specific rates on long-term

incidence. Comparisons were made under various demographic schedules and vaccination

scenarios, including actual fertility and mortality rates and mortality types I and II with

fertility scaled to yield the same growth rate ρ. For ease of presentation, we refer to system

(3) with mortality of types (a)–(d) in Table 3 as models (a)–(d).
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Our main findings include the following regarding the influence of mortality schedules on

the impact of supplemental immunization activities.

1. The impact of 5 or 10k supplementary vaccine doses is greatest in models with

actual mortality and least in ones with type IIb mortality (see Fig. 4 and Table 3).

2. When models with mortality types I and II are compared, more dramatic

differences are observed when type II mortality is combined with a shorter

lifespan (model (d)), in terms of both ℛvmin and long-term incidence (see Table

3 and Fig. 5).

3. When models (a) and (b) are compared, outcomes are similar, presumably

because their survival curves are similar (see Fig. 3).

These results are limited by our assumptions that mixing is proportionate and populations

are at their stable age distributions, neither of which is true in nature. Insofar as many

infectious disease modelers assume homogeneous mixing and either ignore demography or

assume that births equal deaths, whereupon population sizes are constant, our analyses are

more realistic even with these assumptions. And, while both could be relaxed in simulations,

we retained them for consistency.

These limitations notwithstanding, our findings suggest that demographic details may affect

the impact of measles vaccination. In our analyses and simulations, vaccination of children

aged 5 to 19 years has more impact when mortality is type I (or actual in China during

2014) than type II simply because there are more people in those age groups (see Fig. 3). In

turn, this suggests that vaccination may have less impact in countries where mortality from

infectious diseases including measles is greatest. And, even if children survive, measles may

compromise their immune systems such that they succumb to another pathogen (Mina et al.,

2019).

A different approach to optimal vaccination strategies for age-structured models was taken

by Hadeler and Müller (1996a,b) and by Castillo-Chavez and Feng (1998). Those authors

studied a PDE model with an age-dependent vaccination function ψ(a). Their cost function

C(ψ(a)) and effective reproduction number ℛe(ψ(a)) were functions of ψ(a) and the density

of susceptible people at the steady-state under ψ(a). Thus, their optimal strategy informs

“long-term” policymaking (e.g., vaccination schedules). Our optimal solutions are based

on the “gradient.” That is, given a current state, find a vaccine allocation among different

age groups that provides the largest reduction in ℛv. When the system has reached steady-

state with these vaccination rates (after a short time), a new gradient direction can be

computed. This answers the policy question, “On which age groups should supplementary

immunization activities (SIAs) focus?”

A similar study, on optimal vaccination strategies for meta-populations with preferential

mixing formulated as a Lagrange optimization problem, was presented by Poghotanyan et

al. (2018), who provided a rigorous proof for the existence of the optimal solution. They

showed also that the optimal solution matches that obtained using the gradient approach.
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Appendix A.: Initial conditions for simulations

The initial conditions used in Fig. 5 are shown in Table 4. They are based on measles in

China at the beginning of 2014. See Section 4.2 for a description of the manner by which

these initial conditions were chosen.

Appendix B.: Stable age distribution

To confirm that system (3) indeed satisfies the assumption of stable age distribution, Fig. 6

illustrates simulations without infections; i.e., the following system for the demographics:

N1′ = θ1 + μ1 + ρ eρtP1 − (λ1 + θ1 + μ1)N1,
Ni′ = θi − 1Ni − 1 − (λi + θi + μi)Ni, 2 ≤ i ≤ 15 . (18)

This figure is for the actual birth and death rates, with all other parameter values the same

as in Fig. 5(a). The plot on the left shows solutions of (18) for the first four age groups,

whereas that on the right shows e−ρtNi(t), which are constant. This demonstrates that the

population is at its stable age distribution.
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Box I.

Simultation results

J11 =

−(α + θ1 + μ1 + ρ) 0 ⋯ 0 0
r12θ1 −(α + θ2 + μ2 + ρ) ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ r(n − 1)nθn − 1 −(α + θn + μn + ρ)

J12 =

a1β1x1
∗c11 a1β1x1

∗c12 ⋯ a1β1x1
∗c1n

a2β2x2
∗c21 a2β2x2

∗c22 ⋯ a2β2x2
∗c2n

⋮ ⋮ ⋱ ⋮
anβnxn∗cn1 anβnxn∗cn2 ⋯ anβnxn∗cnn

J21 = αIn × n, and

J22 =

−(γ + θ1 + μ1 + ρ) 0 ⋯ 0 0
r12θ1 −(γ + θ2 + μ2 + ρ) ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ r(n − 1)nθn − 1 −(γ + θn + μn + ρ)
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Fig. 1.
Transition diagram for this demographically-realistic transmission model. Each

epidemiological class has n sub-groups (horizontal flows) with transition rates θi due to

aging.
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Fig. 2.
A transition diagram showing the multiple paths that a person, who was infected while in

group j, can take before recovering in group s (1 ≤ j ≤ s ≤ n). The probability of taking the

path indicated by red (thick) arrows is ∏m = j
r − 1 qmξr∏i = r

s − 1 pi, where pi, qi, ξi, are defined in

(9).
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Fig. 3.
Survivorship curves based on the 2014 Chinese death rates (μi) and three alternative

scenarios labeled as type I, type IIa, and type IIb mortality as described in Table 2.
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Fig. 4.
Comparison of results from model (3) with the four mortality schedules described in Fig.

3. Plots (a)–(d) show both the corresponding contour surfaces of the minimized value for

ℛvmin and optimal vaccination rates (χ1, χ2, χ3).
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Fig. 5.
Results of simulating model (3) with four types of mortality when ages 5-19 years (age

groups 3–5) are vaccinated at equal rates corresponding to coverage c = 0, 0.1, 0.2 and 0.4.
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Fig. 6.
Simulation results of the model for demographics (population sizes of age groups in the

absence of infections) for the case of actual birth and death rates. The left plot shows

the population sizes for age groups 1–4 (Ni(t), 1 ≤ i ≤ 4). The right plot shows the age

distribution: e−ρtNi(t), 1 ≤ i ≤ 4.
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Table 2

Parameter values used in analyses of the optimal vaccine allocation for reducing ℛv and numerical simulations

of model (3).

Par Values

(βi) (1, 0.29, 0.093, 0.1, 0.13, 0.22, 0.24, 0.24, 0.23, 0.21, 0.18, 0.14, 0.11, 0.064, 0.2)

(ai) (9.2, 11, 15.3, 18.7, 18.2, 14, 14.3, 14.4, 14.9, 14.8, 13.4, 13, 11.9, 10, 7.8)×30

(fi) (0, 0, 0, 0, 0.98, 6.85, 7.61, 4.08, 1.44, 0.33, 0.09, 0, 0, 0, 0)×10−3

(μi) (3.8, 0.4, 0.2, 0.2, 0.3, 0.3, 0.5, 0.7, 0.9, 1.5, 1.9, 3.6, 4.7, 8.4, 38.1)×10−4

(θi) (1/12, 1/48, 1/60, 1/60, 1/60, 1/60, 1/60, 1/60, 1/60, 1/60, 1/60, 1/60, 1/60, 1/60, 0)

1/α 0.5

1/γ 0.25

For other types of mortality

(μiI) 0 for 1 ≤ i ≤ 14 and 1/(10 × 12) for i = 15 (Type I mortality)

(μiII)a 1/(70 × 12) for 1 ≤ i ≤ 15 (Type IIa mortality with a lifespan of 70 years)

(μiII)b 1/(40 × 12) for 1 ≤ i ≤ 15 (Type IIb mortality, a shorter lifespan than type IIa)

Note: i = 1, 2,…, 15 for 15 age groups. Time unit is months. The multiple 30 in the (ai) vector converts daily rates to monthly ones.
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Table 3

Comparison of the minimized ℛv under four mortality schedules and different vaccine doses.

Mortality 5k doses 10k doses

ℛv Vaccination
rates (× 10−3)

ℛv Vaccination
rates (× 10−2)

(a) Actual 4.38 8.2, 6.6, 4.5 2.74 1.7, 1.3, 0.98

(b) Type I 4.53 7.8, 6.2, 4.2 2.86 1.6, 1.3, 0.92

(c) Type IIa 5.61 5.2, 4.9, 4.2 3.97 1.1, 0.96, 0.75

(d) Type IIb 6.16 4.2, 4.4, 3.5 4.64 0.94, 0.85, 0.68
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